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Abstract. The soliton equations can be factorized by two commutingx- andt-constrained flows.
We propose a method to deriveN -soliton solutions of soliton equations directly from thex- and
t-constrained flows.

1. Introduction

In recent years much work has been devoted to the constrained flows of soliton equations (see,
for example, [1–7]). It was shown in [1–3] that the (1 + 1)-dimensional soliton equation can
be factorized by anx- and at-constrained flow which can be transformed into two commuting
x- and t-finite-dimensional integrable Hamiltonian systems. The Lax representation for
constrained flows can be deduced from the adjoint representation of the auxiliary linear problem
for soliton equations [4]. By means of the Lax representation, the standard method in [8–10]
enables us to introduce the separation variables for constrained flows [11–15] and to establish
the Jacobi inversion problem [13–15]. Finally, the factorization of soliton equations and the
separability of the constrained flows allow us to find the Jacobi inversion problem for soliton
equations [13–15]. By using the Jacobi inversion technique [16, 17], theN -gap solutions can
be obtained in terms of Riemann theta functions for soliton equations; namely, the constrained
flows can be used to derive theN -gap solution for soliton equations. It is believed that the
constrained flows can also been used directly to derive theN -soliton solutions for soliton
equations. However, this case remains a challenging problem.

It is well known that there are several methods to derive theN -soliton solution of soliton
equations, such as the inverse scattering method, the Hirota method, the dressing method,
the Darboux transformation, etc (see, for example, [18–20] and references therein). Here,
we propose a method to construct directly anN -soliton solution from two commutingx- and
t-constrained flows. We will illustrate the method by the KdV equation. The method can be
applied to other soliton equations.

2. Constrained flows

We first recall the constrained flows and factorization of soliton equations by using the KdV
equation. Let us consider the Schrödinger spectral problem

−φxx + uφ = λφ. (2.1)
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The KdV hierarchy associated with (2.1) can be written in infinite-dimensional integrable
Hamiltonian system [18–20]

utn = ∂x
δHn

δu
n = 1, 2, . . . (2.2)

where

δHn

δu
= Lnu L = −∂2

x + 4u− 2∂−1
x ux ∂−1

x ∂x = ∂x∂−1
x = 1. (2.3)

The well known KdV equation reads

ut − 6uux + uxxx = 0. (2.4)

For the KdV equation (2.4), the time evolution equation ofφ is given by

φt = 4λφx + 2uφx − uxφ. (2.5)

The compatibility condition of (2.1) and (2.5) gives rise to (2.4).
It is known that

δλ

δu
= φ2. (2.6)

The constrained flows of the KdV hierarchy consists of the equations obtained from the
spectral problem (2.1) forN distinct real numbersλj and the restriction of the variational
derivatives for the conserved quantitiesHk0 (for any fixedk0) andλj [2–4]

−φj,xx + uφj = λjφj j = 1, . . . , N (2.7a)

δHk0

δu
−

N∑
j=1

αj
δλj

δu
= 0. (2.7b)

The system (2.7) is invariant under all the KdV flows (2.2).
Fork0 = 0, in order to obtain anN -soliton solution, we take

λj < 0 ζj =
√−λj αj = 4ζj j = 1, . . . , N

one obtains from (2.7b)

u = 4
N∑
j=1

ζjφ
2
j = 48T28 (2.8)

where

8 = (φ1, . . . , φN)
T 2 = diag(ζ1, . . . , ζN) 3 = diag(λ1, . . . , λN).

By substituting (2.8), equation (2.7a) becomes

−φj,xx + 4
N∑
i=1

ζiφ
2
i φj = λjφj j = 1, . . . , N

or equivalently

8xx = −38 + 488T28. (2.9)

After inserting (2.8), equation (2.5) reads

8t = 438x + 88x8
T28− 888T28x. (2.10)
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The compatibility of (2.7), (2.10) and (2.4) ensures that if8 satisfies two compatible systems
(2.9) and (2.10), simultaneously, thenu given by (2.8) is a solution of the KdV equation (2.4),
namely, the KdV equation (2.4) is factorized by thex-constrained flow (2.9) and thet-
constrained flow (2.10).

The Lax representation for the constrained flows (2.9) and (2.10), which can be deduced
from the adjoint representation of the spectral problem (2.1) by using the method in [3, 4], is
given by

Qx = [Ũ ,Q]

whereŨ and the Lax matrixQ are of the form

Ũ =
(

0 1

−λ + 48T28 0

)
M =

(
A(λ) B(λ)

C(λ) −A(λ)

)

A(λ) = −2
N∑
j=1

ζjφjφj,x

λ− λj B(λ) = 1 + 2
N∑
j=1

ζjφ
2
j

λ− λj

C(λ) = −λ + 28T28− 2
N∑
j=1

ζjφ
2
j,x

λ− λj .

Then 1
2 TrM2(λ) = A2(λ) +B(λ)C(λ), which is a generating function of integrals of motion

for the system (2.9) and (2.10), gives rise to

A2(λ) +B(λ)C(λ) = −λ− 2
N∑
j=1

Fj

λ− λj
whereFj , j = 1, . . . , N, areN independent integrals of motion for the systems (2.9) and
(2.10):

Fj = φ2
j,x +

(
λj − 2

N∑
i=1

ζiφ
2
i

)
φ2
j + 2

∑
k 6=j

ζk(φj,xφk − φjφk,x)2
λj − λk j = 1, . . . , N. (2.11)

3. Deriving theN -soliton solution

In order to construct theN -soliton solution, we have to setFj = 0. It follows from (2.9) that

φj,xφk − φjφk,x
λj − λk = −∂−1

x (φjφk). (3.1)

Then one finds

Fj = φ2
j,x +

(
λj − 2

N∑
i=1

ζiφ
2
i

)
φ2
j − 2

N∑
k=1

ζk(φj,xφk − φjφk,x)∂−1
x (φjφk) = 0

j = 1, . . . , N. (3.2)

The integrals of motionFj can be used to reduce the order of system (2.9). By multiplying
(2.9) byφj and adding it to (3.2), one obtains

−φj
[
φj,x − 2

N∑
k=1

ζkφk∂
−1
x (φjφk)

]
x

+ φj,x

[
φj,x − 2

N∑
k=1

ζkφk∂
−1
x (φjφk)

]
= 0

j = 1, . . . , N



L118 Letter to the Editor

which results in

φj,x − 2
N∑
k=1

ζkφk∂
−1
x (φjφk) = −γjφj γj = γj (t) j = 1, . . . , N

or equivalently

8x = −08 + 2∂−1
x (88T )28 (3.3)

where0 = diag(γ1, . . . , γN). Set

R = 2∂−1
x (88T )2. (3.4)

Equation (3.3) can be rewritten as

8x = −08 +R8. (3.5)

Notice that

288T = Rx2−1 2R = RT2 (3.6)

it follows from (3.4) and (3.5) that

Rx = 2∂−1
x (8x8

T +88T
x )2

= 2∂−1
x (−0Rx +RRx − Rx0 +RxR) = −0R − R0 +R2. (3.7)

We now show that

γ 2
j = −λj or 02 = −3. (3.8)

In fact, it is found from (3.5)–(3.7) that

8xx = −08x +R8x +Rx8 = 028 + (−0R − R0 +R2)8 +Rx8

= 028 + 2Rx8 = 028 + 488T28

which together with (2.9) leads to (3.8). Therefore, we can take0 = 2, equations (3.5) and
(3.7) can be rewritten as

8x = −28 +R8 (3.9)

and

Rx = −2R − R2 +R2 (3.10)

288T = Rx2−1 = −2R2−1− R +R22−1. (3.11)

To solve (3.9), we first consider the linear system

9x = −29. (3.12)

It is easy to see that

9 = (c1(t) e−ζ1x, . . . , cN(t) e−ζNx)T . (3.13)

Take the solution of (3.9) to be of the form

8 = 9 −M9
thenM has to satisfy

Mx = −2M +M2− R +RM. (3.14)
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Comparing (3.14) with (3.10), one finds

M = 1
2R2

−1 = ∂−1
x (88T ). (3.15)

So we have

8 = (I −M)9 = [I − ∂−1
x (88T )]9 (3.16)

which leads to

9 =
∞∑
n=0

Mn8. (3.17)

By using (3.15) and (3.17), it is found that

∂−1
x (99T ) = ∂−1

x

∞∑
n=0

n∑
l=0

Ml88TMn−l

= ∂−1
x

∞∑
n=0

n∑
l=0

MlMxM
n−l =

∞∑
n=1

Mn. (3.18)

Set

V = (vij ) = ∂−1
x (99T ) vij = −ci(t)cj (t)

ζi + ζj
e−(ζi+ζj )x . (3.19)

One obtains

(I + V )8 = 9 or 8 = (I −M)9 = (I + V )−19. (3.20)

By inserting (3.9) and (3.11), equation (2.10) becomes

8t = [423− 422R + 8(−2 +R)88T2− 888T2(−2 +R)]8

= 4238− 4R228. (3.21)

Let9 satisfy the linear system

9t = 4239 (3.22)

then

9 = (c1(t) e−ζ1x, . . . , cN(t) e−ζNx)T ci(t) = βje4ζ 3
j t j = 1, . . . , N. (3.23)

We now show that8 determined by (3.20) and (3.23) satisfy (3.21). In fact, we have

8t = −(I + V )−1Vt(I + V )−19 + (I + V )−19t

= 4238− 4M238− 4(I −M)V238

= 4238− 8M238 = 4238− 4R228.

Therefore,8 given by (3.20) and (3.23) satisfies (2.9) and (2.10) simultaneously andu =
48T28 is the solution of KdV equation (2.4). It is easy to show that this solution is just the
N -soliton solution. Notice that

2∂x(9
T8) = −29T28 + 29T (−2 +R)8

= −48T (I + V )(I −M)28 = −48T28

namely

u = −2∂x
N∑
i=1

ci(t) e−ζixφi . (3.24)

Formulae (3.20), (3.23) and (3.24) are just those obtained from the Gel’fand–Levintan–
Marchenko equation for determining theN -soliton solution for the KdV equation [17–19] and
finally results in the well known expression for theN -soliton solution of the KdV equation (2.4)

u = −2∂2
x ln(det(I + V )).
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4. Conclusion

The factorization of the KdV equation into two compatiblex- andt-constrained flows enables
us to derive directly theN -soliton solution via thex- and t-constrained flows. The method
presented here can be applied to other soliton equations for directly obtainingN -soliton
solutions from constrained flows.

This work was supported by the Chinese Basic Research Project ‘Nonlinear Sciences’.
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